MODIFIED CHROMIUM OXIDES FOR HIGH-RATE LITHIUM INTERCALATION CATHODES

J. O. BESENHARD* and M. SCHWAKE

Department of Inorganic Chemistry, University of Münster, Wilhelm-Klemm-Str. 8, D-4400 Münster (F.R.G.)

N. MISAILIDIS

Department of Physical Chemistry, Aristoteles University, 54006 Thessaloniki (Greece)

Summary

Normal pressure thermal decomposition of CrO_3 containing ca. 2.5 wt.% SO_3 yields a new chromium oxide phase $\text{CrO}_x(\text{SO})_3$, x being close to 2.5. This material is different from Cr_2O_5 and is practically free from sulfur. Sulphur trioxide obviously acts as a catalyst for oxygen removal. Compared with Cr_3O_8 , $\text{CrO}_x(\text{SO}_3)$ is characterized by better high rate discharge behaviour. Moreover, CrO_3 contamination in $\text{CrO}_x(\text{SO}_3)$ is much lower than in Cr_3O_8 prepared at normal pressure; this is of importance for the long-term storage behaviour of Li/CrO_x batteries. The low-rate energy density of $\text{CrO}_x(\text{SO}_3)$ is inferior to that of Cr_3O_8 .

Introduction

Chromium oxides of the approximate composition Cr_3O_8 have been shown to be useful high-energy-density cathode materials for primary and secondary organic electrolyte Li batteries [1 - 3]. The discharge properties of chromium oxides, CrO_x (2 < x < 3), depend very much on the conditions of preparation. At low rate, energy densities up to 2000 W h kg⁻¹ have been attained with high surface area amorphous Cr_3O_8 [4], but the preparation of this material needs much effort. Simple thermal decomposition of CrO_3 at normal pressure yields a much poorer CrO_x material (energy density *ca*. 1100 W h kg⁻¹).

A common problem with all CrO_x preparations is a sharp drop in the chemical diffusion coefficient of lithium (\tilde{D}_{Li^*}) in $LiCrO_x$ at Li/Cr ratios >ca. 1.0 [4, 5], and therefore the high rate discharge behaviour is disppointing. Moreover, there is usually a fairly large amount of unreacted CrO_3 remaining which is soluble in organic electrolytes. Prolonged decomposition at normal pressure decreases the CrO_3 contamination at the expense of a

^{*}Author to whom correspondence should be addressed.

loss of oxygen (and hence energy density) from CrO_x . This problem can be overcome by the use of high oxygen pressures (of the order of kbar [6]).

We have tried to find alternative and practicable routes to the preparation of modified CrO_x in order to (i) improve their high rate discharge behaviour and (ii) to decrease their CrO_3 contamination.

Results and discussion

An interesting high rate discharge behaviour and also low CrO_3 contamination were observed for CrO_x preparations obtained by heating mixtures of CrO_3 plus 1 - 5 wt.% SO₃ to ca. 270 °C in Pyrex tubes under atmospheric pressure. After some hours of tempering at 270 °C the preparations were practically free from sulfur (verified by X-ray fluorescence). The Cr/O ratios (determined by iodimetric titration) were always slightly higher than 3/8.

The crystallinity of " $CrO_x(SO_3)$ " preparations depends greatly on the temperature program during melting/thermal decomposition of the CrO_3 - SO_3 mixture. Samples prepared by slowly heating (4 °C min⁻¹) CrO_3 plus 2.5 wt.% SO_3 up to 270 °C, followed by 20 h tempering at the final temperature, were poorly crystalline [7]. Apart from weak reflections (some of them due to small amounts of Cr_3O_8) there was only one dominant peak, corresponding to a *d*-value of *ca*. 291 pm.

The crystallinity of $\text{CrO}_x(\text{SO}_3)$ is improved considerably by increasing the time interval of direct contact between SO_3 and CrO_3 . Temperatures around 200 °C proved to be most suitable because the volatility of SO_3 dissolved in CrO_3 melt is not too high in this temperature range. A diffractogram of fairly crystalline $\text{CrO}_x(\text{SO}_3)$ is shown in Fig. 1.

As $CrO_x(SO_3)$ is practically free from sulfur it must be regarded as a new chromium oxide, prepared by SO_3 -catalyzed thermal decomposition of CrO_3 . The presence of SO_3 obviously lowers the temperature of CrO_3 decomposition; SO_3 may also have a kind of "baking powder effect", creating some porosity during evaporation. Typical CrO_3 -contents of $CrO_x(SO_3)$ are of the order of 0.3 - 0.5% (depending on the duration of tempering).

Fig. 1. X-ray diffraction pattern of $CrO_x(SO_3)$ (Cu K α -radiation). Temperature programme: 50 °C (30 min), 200 °C (1 h), 270 °C (6 h); starting composition: $CrO_3 + 2.5$ wt.% SO₃.

Fig. 2. Discharge characteristics of Cr_3O_8 and $CrO_x(SO_3)$ in 1 M LiClO₄/PC-DME (50-50) at 5 mA cm⁻².

The high rate discharge behaviour of $CrO_x(SO_3)$ (temperature programme and starting composition, see Fig. 1) compared with that of Cr_3O_8 (20 h at 270 °C, normal pressure) is shown in Fig. 2. For easier reproducibility, compact electrodes were made by a standardized procedure: addition of 15 wt.% of graphite powder and pressing onto a stainless steel grid at 10000 kg cm^{-2} for 1 min. The porosity of the electrode was not optimized for high rate discharge.

Apart from the "harder" discharge characteristics and better high rate utilization, $CrO_x(SO_3)$ differs from Cr_3O_8 by its lower OCV prior to discharge. In the early stages of discharge, $CrO_x(SO_3)$ cathodes also show significantly lower cell voltages than Cr_3O_8 cathodes. This is true even for very low discharge rates, and verifies that the different discharge behaviour of $CrO_x(SO_3)$ is not simply due to particle size/porosity effects. The discharge behaviour of less crystalline $CrO_x(SO_3)$ is slightly poorer [7].

Electron micrographs of $CrO_x(SO_3)$ (temperature programme and starting composition, see Fig. 1) show a surprisingly crystalline material (Fig. 3(a)); its particle size is comparable with that of Cr_3O_8 (Fig. 3(b)).

(a)

Fig. 3. Electron micrographs of chromium oxide samples; for preparation procedure see text. (a) $\operatorname{CrO}_{x}(\operatorname{SO}_{3})$; (b) $\operatorname{Cr}_{3}\operatorname{O}_{8}$.

Sample	Specific surface area (BET method) $(m^2 g^{-1})$		
	Particle size ca. 0.5 - 2 mm	Particle size ca. 1 - 10 μm	
Cr_3O_8 $CrO_x(SO_3)$	1.48 0.56	2.6 3.7	

 TABLE 1

 BET surface area determinations of chromium oxides

 $CrO_x(SO_3)$ samples prepared by simply heating the CrO_3-SO_3 mixture are much less crystalline [7].

In agreement with the electron micrographs, BET surface area determinations (N₂ adsorption) show relatively small surface areas for both chromium oxides, Cr_3O_8 and $CrO_x(SO_3)$ (Table 1). Grinding has a greater effect on the surface area of $CrO_x(SO_3)$ than on Cr_3O_8 .

Low rate discharge curves of $\text{CrO}_x(\text{SO}_3)$ show a significant "Spannungssack" at a Li/Cr ratio of ca. 0.45 (Fig. 4). Beyond this point the discharge and charge of $\text{CrO}_x(\text{SO}_3)$ is related to phase transformations. Therefore, no meaningful chemical diffusion coefficients, \tilde{D}_{Li^*} , can be measured by electrochemical techniques — they appear to be of the order of 10^{-15} cm² s⁻¹, in spite of the high rate capabilities of $\text{CrO}_x(\text{SO}_3)$.

The OCV of $\text{Li/CrO}_{x}(\text{SO}_{3})$ cells prior to discharge is *ca.* 3.6 V; this is about 300 mV less than the undesired high value of $\text{Li/Cr}_{3}\text{O}_{8}$ cells.

Utilization diagrams show, as expected, that the advantage of $\text{CrO}_x(\text{SO}_3)$ over Cr_3O_8 increases with discharge rate. This is demonstrated by Fig. 5, showing utilizations of Cr_3O_8 and $\text{CrO}_x(\text{SO}_3)$ in dependence of current density.

Fig. 4. Discharge characteristics of $CrO_x(SO_3) + 15$ wt.% graphite pressed powder electrodes in 1 M LiClO₄/PC-DME (50-50).

Fig. 5. Utilization of chromium oxide electrodes in dependence of discharge rate, cut-off voltage 1.5 V vs. Li/Li⁺. (a) 1 M LiClO₄/PC; (b) 1 M LiClO₄/PC-DME (50-50)

Fig. 6. Charge/discharge of $CrO_x(SO_3) + 15$ wt.% graphite pressed powder electrode on Pt grid in 1 M LiClO₄/PC-DME (50-50), $i = 100 \ \mu A \ cm^{-2}$.

The relatively high utilization of Cr_3O_8 at ca. 10 mA cm⁻² in LiClO₄/ PC-DME may be misleading. Despite the very "slopey" discharge characteristic of Cr_3O_8 , the utilization figure is quite high because of the low cut-off voltage. At ca. 1 mA cm⁻² there is a cross-over of the utilization/current density characteristics shown in Fig. 5(a) and (b), *i.e.*, at low current densities the higher energy density of Cr_3O_8 is becoming dominant. In preliminary cycling experiments the behaviour of $CrO_x(SO_3)$ was very similar to that of Cr_3O_8 (Fig. 6).

Conclusion

Thermal decomposition of CrO_3 in the presence of SO_3 yields a new chromium oxide phase with interesting high rate discharge behaviour in organic electrolytes. A further advantage of this material is its very low content of CrO_3 contamination. This is of importance not only for pollution control but also for long-term storage of Li/ CrO_x batteries.

Acknowledgements

The authors are obliged to Fonds der Chemischen Industrie for financial support and to P. Olbricht, Institute of Physical Chemistry, University of Münster, for BET measurements.

References

- 1 J. O. Besenhard and R. Schöllhorn, J. Electrochem. Soc., 124 (1977) 962.
- 2 Y. Takeda, R. Kanno, Y. Tsuji, O. Yamamoto and H. Tagushi, J. Power Sources, 9 (1983) 325.
- 3 Y. Toyoguchi, J. Yamaura, T. Matsui and T. Iijima, in J. P. Gabano and Z. Takehara (eds.), Proc. Symp. on Primary and Secondary Ambient Temperature Lithium Batteries, The Electrochemical Society, Pennington, NJ, 1988, p. 659.
- 4 O. Yamamoto, Y. Takeda, R. Kanno, Y. Oyabe and Y. Shinya, J. Power Sources, 20 (1987) 151.
- 5 J. O. Besenhard, J. Heydecke, E. Wudy, H. P. Fritz and W. Foag, Solid State Ionics, 8 (1983) 61.
- 6 K. A. Wilhelmi, Acta Chem. Scand., 22 (1968) 2565.
- 7 J. O. Besenhard, M. Schwake and N. Misailidis, Ext. Abstr., 4th Int. Meeting on Lithium Batteries, Vancouver, 1988.